HEAT AND MASS TRANSFER DURING THE LAMINAR
FLOW OF DISSOCIATING N,0, GAS IN A
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The problem of heat and mass transfer during the laminar flow of a dissociating gas in a tri-
angular bundle of rods is analyzed. The solution is obtained by numerical means.

In the study of a whole series of modes of operation of various heat~exchange devices it ig desirable
to have the fullest information on heat exchange in the rather common configuration which consists of a
bundle of longitudinally bathed cylinders. This mode of flow with the condition of thermal stabilization
has been examined rather thoroughly in the case of the flow of liquid metals [5-7] and of chemically inert
substances [2]. However, the effects of heat and mass transfer during the flow of dissociating gases, al-
most unstudied at present, are of particular interest in connection with the prospects of their use as the
coolants for fagt-neutron nuclear power plants [1].

In the case when N chemical reactions, in which k components take part, occur in a volume the equa-
tions of conservation of energy and mass have the form
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After the substitution of (3) and (2) into (1) the energy equation takes the form
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the energy Eq. (4) can be written in the following form:
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PCoy e = div (A;grad T) — 2 Qpil; — 2 fnCps grad T, (5)
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s epr =" cpnCr. (6)
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Se 7 Now suppose the reaction of dissociation of nitrogen tetroxide
/ occurs in the stream:
Fig. 1. Elementary cell of the .
channel. N,0,==2NO, == 2NO - O,.

We assume that the stoichiometric relations are satisfied in

the stream, the flow is hydrodynamically stabilized, the "frozen™

thermophysical properties do not depend on the temperature and pressure, and the heat capacities of the
individual components of the mixture are approximately equal to one another. The latter approximation

K
allows one to neglect the term 2 jkcpjkgrad T. In addition, because of the symmetry of the infinite sys-
k=1
tem of smooth cylinders, arranged in staggered order, one can analyze the region ABCD shown in Fig. 1.
In this case the gystem of differential equations of heat and mass transfer takes the form
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The composition of the remaining components of the system is found with the help of the stoichio-

metric equations.

The field of velocity w for the stabilized isothermal flow was determined by Sparrow and Loeffler [2]
and is found from the equation

oot o (] [ wa s § (2 1o ). o0
where
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The values of the coefficients 6’{ and the function F(t) are presented in [2] and [3], respectively.

The solution of the system of differential Eqs. (7)-(9) is rather complicated. In the case of heating,
however, the dissociation of N,0, takes place almost sequentially in two stages. The first stage proceeds
rather rapidly and can be taken as an equilibrium stage [1]. The separate study of the heat exchange of the
first and second stages of dissociation is therefore justified to a certain extent, with Eqs. (7), (8) (Da, = 0,
C, = 0) being considered first and then Eqs. (7), (9) (Da; = 0,C¥ = 0).

The solution of the problem of heat exchange with boundary conditions of the second kind in the case
of the occurrence of only the first equilibrium stage of N,O, dissociation in the channel canbe simplified
considerably in the case of Le = 1, since one can then obtain an equation for the dimengionless enthalpy
which coincides with the energy equation for the flow of a chemically inert gas. For this it is enough to
multiply Eq. (8) by Qp and add it to Eq. (7) with Da, = 0. Finally, we have
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TABLE 1. Results of Calculation Based on Egs. (27) and (29)
£=1,05 t=1,1 i t t=1,3
*‘ | * 7
: B @ B (2 s 8 ! Ben | : 1 B ! B2
§ (29) 5 (27) B; (29) | ben | | B; 29) | 8 21
i T "
0,7-10-3 1,208.10-3 ! 1,208.10-3 0,7.10-3 1,87208.10~9 | 1,858.10—3" 0|2-10—1[ 0,013816 |  0,013768
0,4.10-2 0,006904 0,006884 0,4.10-2 0,010639 I 0.010639 ' 8,1-10-11  ©,069080 H 0,067885
0,1.10-1 0,017260 0,017273 0,2-10-1 0,053488 ' 0053463 | 0.5.10-1] 0,3454 | 0,268375
0,5.10-1 0,08630 0,075282 0,64-10-1| 0,1711616 | 0,163831 | 0,7.10-1| 048356 |  0,366879
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Fig. 2. Variation in Nusselt number along T?R_ =1 17)
|AB

channel in first stage of N,O, dissociation: 1,
2,3) Ty=428°K; t =1.05, 1.05, 1.1, and 1.3;
4,5,6)t=1,05,1.1, and 1.3, "frozen™ values;

The initial and boundary counditions at the lines BC,
CD, and AD have the form

7,8,9) T =446°K, t = 1.05, 1.1, and 1.3, re-
spectively.

H* =0,
o
on e,

g0,
oH* |
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=0,

Equation (13) together with the boundary conditions (17), (18) was solved numerically with gory/Af = 595 on
a Minsk-22 computer by the method of variable directions, the general principles of which are presented in
{4, 9]. The accuracy of the solution was tested using trial functions, Suppose, for example, that we have
the equation

Lp=0

19)

with the boundary conditions
ap i '
3 ia =1, (20)

where L is the differential operator. For the difference operator A, which approximates L, we have the
difference equation

Ay =0, (21)

‘ﬁ =t 22)
For an arbitrary function f one can write

Lf=q, (23)

g.L:@%' (24)
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TABLE 2. Stabilized Nusselt Numbers Nug, with Bound-
ary Conditions of the Second Kind

Nitfoo [5] Niig,, [6] Ny Ntigos »
‘ ‘ el ’ M § | Mg 171 | authors* data
|
1,05 ‘ 2,5 1,1 1,38
1,1 4,1 4 2,85 3,76
1,2 6,7 6,67 6.8
1,3 8,5 9 8,5
B \
\ : It is obvious that f will satisfy the difference equation
\ Af —g, =0, @25)
\ A 1 .
\ = @y .
a6 \\ An ¢ =0 (26)
A\ o
S Thus, one can compare the exact values of the function with
\ those found from the difference Egs. (25), (26). As the trial
- \\/ 4 ‘ functions we chose a linear function of the form f=a -1
. ‘\\\ \ and a nonlinear function of the form
14 ) ~ -
\\ \/\‘:lg_____ 7\ ! f’ = Qq-r (e“xg, e“:R’ EGN?).
X N
&\\ PR AN ; For the linear function the exact values coincided with
> X, \ 17— ' those found from (25), (26) to the last place. For the non-
| AN N — linear function in the region of point C the agreement was
92 S T —— g g
SNy T to 0.2%.
AR ST : ion
~N L &‘_ We determine the average mass enthalpy, which in
S —— T our case coincides with the "frozen" temperature, as fol-
lows:
0 2 18 27 ¢ (Fe Y 4o
- Hr=8,— 0 U 27
Fig. 3. Surface temperature of rod dur- =Yr= PP
ing second stage of N,0, dissociation: 1,2,
3)t=1.05,£=0.26-10"%4,5,6) t=1.1, On the other hand, with boundary conditions of the
£=0.68-10"%7,8,9)t=1.3,£=03-107} second kind one can write an equation for the average mass
6fc» 0g» and fec, respectively, for each t. enthalpy which is obtained after integration of Eq. (13) over
the cross-sectional area of the channel. This equation has
the form
dH* _ do
L L =45 (28)
dt dE
or
H* =0, = 48, (29)

and the results of a calculation based on Eqs. (27) and (29) are presented in Table 1, from which it is seen
that the values of ; calculated from the two equations agree rather well for { < 0.5-107". The disagree-
ments for larger £ are evidently caused both by the accumulation of errors in the course of the calculations
and by the calculation of the double integral of (27).

Since the first stage of N,0, dissociation is an equilibrium stage the temperature field is uniquely
connected with the enthalpy field. For the determination of the field of temperatures 6¢ we used an experi-
mental dependence of the enthalpy on the temperature [8] at a pressure of 150 atm, and the temperature at
the channel entrance was taken as equal to 428 and 446°K.

The variation along the channel of the Nusselt numbers, determined from the hydraulic diameter, is
presented in Fig. 2. The "frozen" Nusselt numbers (curves 4-6) decrease with greater distance from the
channel entrance, reach their stabilized values, and remain constant after this. The stabilized values of the
"frozen" Nusselt numbers Nug  are presented in Table 2 together with the data of other authors [5-7]. For
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i';g tight bundles the results of the different authors disagree very con-
siderably. Fort > 1.1 the values can be congidered to be in full
agreement. It should be noted that in [5] the stabilized values of
Nug,, are obtained with the help of the limiting transition as Re
—w, with the values of the turbulent pulsations being used as the
most accurate for small Reynolds numbers. Asg for the compari-
son with experimental data on the flow of liquid metals which is
made in that report, in this case the stabilized Nug, with the lami-
nar flow of liquid metalgs will always be somewhat higher than with
gas flow because of the additional electron conduction of heat in
metals. Ag for [6], the authors determined Nug,, not from the
Vs P i P P average mass temperature, but from the average temperature in
the cross section, which can also lead to some overstatement of the
stabilized values.

b

4

Fig. 4. Variation in Nusselt num-
ber along the chauanel in the second

stage of N,O, dissociation; 1, 2, 3) Curves 1-3 and 7-9 of Fig. 2 show the variation in Nug along
t=1.054,5,6)t=1.1;7, 8, 9) the channel for different inlet temperatures. Curves 1-3 cor-

t = 1.3; Nug, Nu, and Nug, respec- respond to an inlet temperature lower than the temperature of the
tively, for each t. maximum effective heat capacity on the chosen isobar. The char-

acter of the curves is due to the fact that at the corresponding
values of £ the average surface temperature of 2 rod is close to the temperature of the maximum "effec-
tive heat capacity." Curves 7-9 are obtained with an inlet temperature T, = 446°K, which equals the tem-
perature of the ¢peff maximum, and as a consequence the functions Nug ) do not have extrema.

In order to determine the temperature field in the case of the second stage of nitrogen {etroxide dis-
sociation, which, as in known, proceeds at a finite rate, the system of Eqs. (7) and (9) was solved numeri-
cally (with Da; = 0, qcro//\f =595, Ty = 500°K, Cy4y = 0.001, P = 10 atm, and a noncatalytic cylinder surface,
by the same method of variable directions} with the boundary conditions

t=0, 0=0, Ci=0,

90 acs |
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The temperature variation on the surface of a rod is presented in Fig. 3. Since the effect of the
chemical reaction is manifested at a certain distance which depends on the lattice spacing, the tempera-
tures at the rod surface are shown for different values of £&. The effect of the chemical reaction on the
heat exchange is manifested in particular in a marked decrease in the temperature variation of the surface.
This is due to the additional heat transfer because of the concentration diffusion from the "stagnant zone"
to the axis of symmetry of the channel.

In the case of tight bundles (Fig. 3, curves 1-3) the temperature in the "stagnant zone" is close to the
equilibrium temperature, whereas it coincides with the "frozen" temperature in the region of the axis of
symmetry of the channel. The fact that equilibrium is established in the "stagnant zone" while the flow can
remain "frozen" in the region of the axis of symmetry leads to the fact that cases are possible where the
temperature variation for a chemical reaction proceeding at a finite rate will be smaller than for an
equilibrium reaction (Fig. 3, curves 4-6), For spread bundles with t = 1.3 the effect of the neighboring
rods is not very great and the temperature assumes an intermediate values between the "frozen" and
equilibrium temperatures (Fig. 3, curves 7-9), with the curves being about equidistant, which indicates
that equilibrium in the stream is reached more uniformly over the perimeter than for tight bundles.

If the chemical reaction proceeds with a finite rate then the Nusgelt numbers in the initial section of
the channel coincide with the "frozen" Nu, since the time the gas remains in the channel is insignificant
(Fig. 4). The difference from Nuy becomes ever more substantial with greater distance from the entrance
and at certain values of { the Nusselt numbers reach their equilibrium values. Since the time the gas re-
mains in the channel increases with an increase in the spacing, in spread bundles equilibrium is reached
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at smaller distances from the entrance than in the case of tight bundles (Fig. 4, curves 2 and 3, 5 and 6, and
8 and 9).

In conclusion, we note that in the case of chemical reactions the heat exchange proceeds considerably
more intensively than with the flow of chemically inert substances, with the maximum intensity being
reached in the cage of equilibrium flow. Moreover, with longitudinal flow of a chemically reacting stream
over bundles of heated cylinders the temperature variation over the perimeter of a cylinder is considerably

reduced.

t

Ty

dy

R = r/1,

NOTATION

is the gpacing of rods;

is the radius of cylinders;
is the hydraulic diameter;
is the dimensionless radius;

= 1/RePr-x/d, is the dimensionless longitudinal coordinate;
6 = (T—- To)/quO/Xf is the dimengionless temperature;
Ck Ck—Cko is the relative concentration of component k;
= (H-H,;- qcro/)\f)/cpf is the dimensionless enthalpy;
jk is the mass flux of component k, kg/m? - sec;
Ik is the mass source of k-th component, kg/m3-sec;
I is the rate of reactionl, kmole/m-* sec;
my is the molecular weight of component k, kmole/kg;
Qp? is the calorific effect of reactionl, kJ/kmole;
6 = dp/1y;
Uy is the longitudinal velocity component;
U is the average mass velocity;
Re = Udy/v;
Pr =v/a;
Leg = pchpf/Af; '
Day, = I /PDk is the Damkeller number;
Qpr = Qg /mkcpf% o/ Ap; :
de is the specific heat flux, kW/m?;
Y is the cross-sectional area.
Indices - T _
f are the "frozen" values;
e are the equilibrium values;
c are the parameters at surface of cylinder;
0 are the parameters at channel entrance;
k, k-th is the k-th component;
1,l1-th is the Z-th reaction;
1) N,O4; 2) NO,; 3) NO; 4) Oy e .
© are the stabilized values of parameters.
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